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Abstract
Purpose – In this study, the authors aim to upgrade their previous developments of the local radial basis
function collocation method (LRBFCM) for heat transfer, fluid flow, electromagnetic problems and linear
thermoelasticity to dynamic-coupled thermoelasticity problems.
Design/methodology/approach – The authors solve a thermoelastic benchmark by considering a linear
thermoelastic plate under thermal and pressure shock. Spatial discretization is performed by a local
collocation with multi-quadrics augmented by monomials. The implicit Euler formula is used to perform the
time stepping. The system of equations obtained from the formula is solved using a Newton–Raphson
algorithm with GMRES to iteratively obtain the solution. The LRBFCM solution is compared with the
reference finite-element method (FEM) solution and, in one case, with a solution obtained using the meshless
local Petrov–Galerkin method.
Findings – The performance of the LRBFCM is found to be comparable to the FEM, with some differences
near the tip of the shock front. The LRBFCM appears to converge to the mesh-converged solution more
smoothly than the FEM. Also, the LRBFCM seems to perform better than theMLPG in the studied case.
Research limitations/implications – The performance of the LRBFCM near the tip of the shock front
appears to be suboptimal because it does not capture the shock front as well as the FEM. With the exception
of a solution obtained using the meshless local Petrov–Galerkin method, there is no other high-quality
reference solution for the considered problem in the literature yet. In most cases, therefore, the authors are able
to compare only two mesh-converged solutions obtained by the authors using two different discretization
methods. The shock-capturing capabilities of themethod should be studied in more detail.
Originality/value – For the first time, the LRBFCM has been applied to problems of coupled
thermoelasticity.

Keywords Local radial basis function collocation method, Meshless methods, Multi-quadrics,
Coupled thermoelasticity

Paper type Research paper

1. Introduction
Thermomechanical phenomena are important in many different fields of science and
engineering, because they have a significant impact on constructions and parts that either
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undergo repeated loading or reheating cycles or are exposed to rapid changes in the load or
temperature. The stresses generated during these kinds of events greatly affect the
reliability and failure rate of engineering parts and scientific equipment. Therefore, a
considerable effort is made to develop newmethods to model this kind of phenomenon.

To accurately model coupled thermoelasticity problems, we need to simultaneously solve
two sets of equations:

(1) a hyperbolic equation of motion for elastic deformation; and
(2) a parabolic equation governing the heat conduction.

The different natures of the governing equations prevent us from obtaining any analytical
solutions for the fully coupled problem. The exact solutions can only be obtained if we omit
the full coupling, as was the case in the fundamental work of Danilovskaya (1952) and Boley
and Tolins (1962). To verify the numerical methods on fully coupled problems, we are
limited to cross-code comparisons.

Because numerical methods are of great practical importance in the field of coupled
thermomechanics, many reference solutions using different approaches can be found from
traditional methods used in commercial codes, to contemporary methods including a large
spectrum of meshless approaches (Gao et al., 2015; Hosseini-Tehrani and Eslami, 2000;
Sladek et al., 2009, 2006).

In this paper, the local radial basis function collocation method (LRBFCM) is extended to
coupled thermoelasticity problems. The method uses a strong formulation. It calculates the
discretized differential operators using a local interpolant constructed from radial basis
functions and linear monomials. The LRBFCM was first introduced to solve heat-diffusion
problems by Šarler and Vertnik (2006). The method has been successfully applied to many
different fields in science and engineering (Kosec and Šarler, 2014; Mramor et al., 2013;
Vertnik and Šarler, 2011), including the work done by the present authors in the field of solid
mechanics (Mavrič and Šarler, 2015a, 2015b).

In this paper, we first present the governing equations and boundary conditions of the
posed problem (Hosseini-Tehrani and Eslami, 2000). The solution procedure based on the
LRBFCM is presented subsequently. The formulation of the method is followed by a short
discussion of the implementation details followed by the result for the following three cases:
the temperature-driven shock, the pressure-driven shock and the combination of both.

The results are compared with a reference solution calculated using the finite-element
method (FEM) implemented in FreeFemþþ (Hecht, 2012) and, for the case of thermal shock,
with the solution presented in (Zheng et al., 2015) obtained by using a novel meshless local
Petrov–Galerkin method.

2. Governing equations
In this paper, we consider the problem of coupled thermoelasticity (Fung and Tong, 2008)
given by the following system of equations:

rcp _T ¼ kr2T � bT0r � v
r _v ¼ ðl þ 2GÞr2u þ ðl þ GÞrðr � uÞ � brðT � T0Þ
_u ¼ v

(1)

The equations couple the temperature T, the deformation u and the deformation rate v. The
material is described by its density r , heat capacity cp, thermal conductivity k and the
thermoelastic coupling parameter b = (lþ2G)a, where a is the thermal expansion parameter.
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The material’s mechanical properties are given by the Lamé parameters l and G. The
reference temperature at which the thermal strains are assumed to be zero is denoted byT0.

The system of governing equations can be given in terms of dimensionless variables
(Hosseini-Tehrani and Eslami, 2000):

_̂T ¼ r2T̂ � T0b
2

rcpðl þ 2GÞr � v̂

_̂v ¼ g
l þ 2G

r2û
l þ G
l þ 2G

rðr � ûÞ � rT̂ : (2)

The dimensionless quantities are more appropriate when we want to compare different
solutions. The dimensionless variables are defined as follows:

x̂ ¼ x
l
; t̂ ¼ tc

l
; ŝ ¼ s

bT0
; T̂ ¼ T � T0

T0
; û ¼ l þ G

b
u: (3)

We use them to state our results in the rest of the paper, with the hats omitted for
convenience. In the definition of the dimensionless variables in equations (3), l= k/rcpc is the
characteristic length and c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l þ 2G=r
p

is the speed of the longitudinal waves.
In our code, the system of equations (1) is implemented in dimensional form. The

calculation in dimensionless variables is performed by selecting the material properties, as
specified in Table I. To state the results in terms of dimensionless variables uniquely, the
Poisson ratio also needs to be known. In this investigation, the value � = 0.3 is used.

The introduction of dimensionless variables also adds an additional dimensionless
parameter, called the thermoelastic parameter C, given by:

C ¼ T0b
2

rCðl þ 2GÞ (4)

The thermoelastic parameter gives us the amplitude of the coupling between the
deformation and the temperature field. The case of uncoupled thermoelasticity is obtained
by setting C = 0, meaning that the thermal transport is independent of the deformation,
which is the assumptionmade in most practical studies.

2.1 Boundary conditions
The benchmark case is the same as the one considered by Hosseini-Tehrani and Eslami
(2000) and, with some minor modifications, by Zheng et al. (2015). We are considering a

Table I.
Values of the
material properties
used to perform the
calculations in
dimensionless
variables

Material property Value

r 1 kg/m3

cp 1 J/kg
k 1 W/m2K
E 3þ 2� þ 2/(� � 1)
� 0.3
a (1� 2�)/E
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square domain with a side length 10, as illustrated in Figure 1. The domain is thermally
isolated on all sides n ·rT = 0, except for the side at x1 = 0, where the temperature is
specified. The top (x2 = 10) and bottom (x2 = 0) of the domain are traction free, whereas the
deformation at side x1 = 10 is set to zero. On the side x1 = 0, the traction in the x1 direction is
specified as required for different benchmark cases.

3. Solution procedure
3.1 Domain discretization and subdomain selection
The problem is considered in the domain X with the boundary C. A node-generation
method is used to position the nodes, both in the domain and on the boundary. In our
case, we use a simple regular grid, but a more general positioning can easily be used.
We select a certain number (lN) of nearby nodes as the influence domain for each node l
in the computational domain, which results in the local nature of the method. In the
present paper, we use the nearest neighbors as a way of determining the domains of
influence. The choice of subdomains induces a mapping ls: i ! k from the local index i
of the subdomain l, ranging from 1 to lN, to the global index k that is assigned to each of
the nodes.

3.2 Construction of local interpolants
On each influence domain, the solution is locally interpolated with an RBF interpolant. In
our case, we use rescaled multi-quadrics, which are known to provide a very good
interpolation accuracy (Larsson and Fornberg, 2005) and were already studied for
thermoelastic problems in Mavrič and Šarler (2015b). In the latter, the convergence was
analyzed with respect to the number of local collocation points lN, the selection of
augmentation monomials and the value of the RBF shape parameter. The multiquadrics are
given by:

UlðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e

lh0

� �2
s

jr� rl j2 þ 1: (5)
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Here, e is the dimensionless shape parameter, lh0 is the appropriate scaling factor and rl is
the position of l-th node, on which the multiquadric is centered. The scaling factor lh0 causes
our approximation to be stationary (Wendland, 2004) and the shape parameter e to be
dimensionless. The scaling parameter describing the spatial scale of the influence domain is
calculated using:

lh0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXlN
i¼1

jr
l sðiÞ � rl j2

lN � 1

vuuuut
(6)

Once the subdomain has been chosen for every node, the interpolant for each physical
field present in the governing equations is constructed over each subdomain. The
interpolant for the field q, which can be a vector or a scalar field, in the l-th influence
domain, is given by:

qj lðrÞ ¼
XlN
i¼1

lai;jUl sðiÞðrÞ þ
XlNþaN

i¼lNþ1
lai;j piðr� rlÞ ¼

XlNþaN

i¼1
lai;jWiðrÞ; j ¼ 1; 2: (7)

The monomials pi(r) are used to augment the basis and contribute to a significant
improvement of the method’s performance in our setting (Mavrič and Šarler, 2015b). The
number of augmentation monomials aN is set to three in this work, meaning that the
constant and two linear functions (x1-x1, l, x2-x2, l) are added to the set of basis functions.

The constructed interpolant can then be used to calculate any linear differential operator
D acting on the physical field q(r). Because the interpolation coefficients are constant over
each influence domain we see that:

DqðrÞ ¼
X
x

Dj ;x ðrÞqx ðrÞ �
XlNaN

i;x
lai;xDj ;x ðrÞWiðrÞ (8)

Because the action of the linear differential operator on the basis functions is known, the
value of the differential operator is now restated in terms of the coefficients lai,j .

The unknown coefficients lai,j are determined by writing out the interpolation equation
of the field values at each point in the influence domain. If the point lies on the boundary,
where the linear boundary condition Bj x(r)qj (r) = bx(r). The system of equations for each
subdomain l can be written inmatrix form as:X

i;z
lAji;j z lai;z ¼ lg j;j (9)

The right-hand-side vector g and the matrixA are given by:

lAji;j x ¼

Wiðrl sðjÞÞd j x

Bj x ðrl sðjÞÞWiðrl sðjÞÞ
pjðrl sðiÞÞ
0

ifr
l sðjÞ 2X

ifr
l sðjÞ 2C

if j> lN ^ i< lN

otherwise

; lg j;j ¼
qj ðrl sðjÞÞ
bx ðrl sðjÞÞ

0

if r
l sðjÞ 2X

if r
l sðjÞ 2C

if j> lN

8>><
>>:

8>>>>><
>>>>>:

(10)
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3.3 Application to differential operators
What remains to be completed in order to calculate the values of the differential operators is
to combine equations (8) and (9). The unknown coefficients lai,j are formally calculated by
inverting the system of linear equation (9):

laj;j ¼
XlNþaN

k;z
lA�1

jk;j z lg k;z (11)

This results in the following expression for the value of the differential operator:

DqðrÞ �
XlN ;aN

k;x
lg k;x

XlN ;aN

i;z
lA�1

ik;z xDj z ðrÞWiðrÞ (12)

Recalling that the elements lg k,x contain either the values of the field in the nodes in the
influence domain or the boundary conditions, we obtain an explicit expression for the value
of the differential operator.

3.4 Time stepping
The LRBFCM only allows us to obtain expressions for discretized operators on the specific
node arrangement. The variables are assembled in a column Y ¼ ½v;u;T�T to perform the
time stepping. The set of governing equations then becomes _Y ¼ GðY ; tÞ. The implicit
Euler method is used to perform the time stepping. The obtained system of equations is
solved by using the Newton–Raphson method, using GMRES with an ILU0 preconditioner
to solve the linearized system. The Jacobian is numerically calculated using forward
difference formulas at each iteration step. The time stepping is performed using a constant
time step ofDt= 0.01 for both spatial discretization approaches.

4. Numerical results
4.1 The reference FEM solution and mesh convergence
The free package FreeFemþþ (Hecht, 2012) was used to calculate the reference FEM
solution. The FEM discretization was performed by using Lagrange P2 elements on a
triangulated square mesh. The discretization uses three times as many interior degrees of
freedom, as there are discretization points. The domain discretizations for both approaches
are shown in Figure 2.

The mesh convergence of the FEM solution is shown in Figure 3. The plot shows the
axial deformation, the axial stress and the temperature for the case of a pressure shock with
the thermomechanical parameter set to C = 0.1. All the quantities are displayed for two
times, i.e. t= 3 and t= 6, for different values of the number of discretization points along one
dimension N. We see that there is no significant difference between the solutions for N = 25
andN= 50, so we take the solution withN= 50 as the mesh-converged reference solution.

In the same manner, the LRBFCM mesh convergence is studied in Figure 4. We use nine
nodes per influence domain and the shape parameter value e = 2·10�4, which we find to be a
good choice for the considered problem (Mavrič and Šarler, 2015b). Again, we notice that
there is no significant difference between the solutions forN = 75 andN = 151, so we use the
solution for N = 151 as the mesh-converged LRBFCM solution. It is also clear that the
LRBFCM gives somewhat smoother results than the FEM for a given number of unknowns.
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4.2 Thermal shock
A thermal shock is applied to the plate by setting Tw = 5t exp(-2t) and tw = 0. The results
along the centerline at x2 = 5 are shown for the times t = 3 and t = 6. In Figure 5, the axial
deformation u1 is shown, Figure 6 shows the axial stress s 11 and Figure 7 shows the
temperature T. It is clear that the FEM and the LRBFCM solutions match well qualitatively.

Figure 3.
Study of the mesh
convergence of the
reference FEM
solution

Figure 2.
Illustration of the
spatial structure used
for the discretization:
the triangular FEM
mesh on the left and
the LRBFCMnode
arrangement on the
right
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Figure 4.
Study of the mesh
convergence of the
LRBFCM solution

Figure 5.
Comparison of the

axial deformation for
thermal shock

loading

RBF
collocation

method

1071



www.manaraa.com

The LRBFCM solution underestimates the peak values of the deformation and stress, but it
performs well when calculating the temperature field. By neglecting the areas around the
shock front, we can see that the LRBFCM matches well with the FEM solution, especially
good matching is observed for the case of the axial stress at t = 6 and x1< 3. In this area, the

Figure 6.
Comparison of the
axial stress for
thermal shock
loading

Figure 7.
Comparison of the
temperature for
thermal shock
loading
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information from the boundary conditions at x2 = 0 and x2 = 10 reaches the centerline. A
good match in this area means that the LRBFCM correctly calculates the coupling between
the two vector components of the solution.

In this case, we can also compare the results with those obtained using MLPG, published
in a recent paper Zheng et al. (2015). We can see that the MLPG solution is even worse at
calculating the peak values and does not reproduce the hump in the axial stress at t = 6 and
x1 < 3. The reason for this might be that the solution is not yet mesh-converged because the
paper Zheng et al. (2015) claims to use a grid of only 13 � 13 nodes to discretize the
governing equation. For this reason, we refrained from making any further comparisons
with their results.

4.3 Pressure shock
The pressure shock is applied to the plate by setting Tw = 0 and tw = 5t exp(�2t). We show
the results in the same manner as for the previous case. In Figure 8, the axial deformation u1
is shown, Figure 9 shows the axial stress s 11 and Figure 10 shows the temperatureT. In this
case, we see excellent agreement between the FEM and the LRBFCM solutions for both
stress and deformation. Some differences are only present when comparing the temperature
at t= 3, where the LRBFCM results are consistently higher than the FEM results.

4.4 Thermal and pressure shock in combination
Both shocks are applied to the plate in combination by setting Tw = 5t exp(�2t) and tw = 5t
exp(�2t). The results are shown in the same manner as for the previous case. In Figure 11,
the axial deformation u1 is shown, Figure 12 shows the axial stress s 11 and Figure 13 shows
the temperatureT.

Because the system of governing equations is linear, the solution to this problem is nothing
but the sum of the two previous solutions and so are the differences between the FEM and the
LRBFCM solutions. We can see good agreement between the solutions for the deformations

Figure 8.
Comparison of the

axial deformation for
pressure-shock

loading
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and the stress. Larger differences can be seen when comparing the temperatures, where the
LRBFCM solution is again consistently higher than the FEM solution.

5. Conclusions
In this paper, we have demonstrated that the LRBFCM can compete with the FEM when
modelling coupled thermoelasticity. The LRBFCM solution matches well with the FEM

Figure 9.
Comparison of the
stress for axial
pressure-shock
loading

Figure 10.
Comparison of the
temperature for
pressure-shock
loading
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solution, both qualitatively and quantitatively. Some differences remain in the ability to
capture the shock front, where the FEM method performs slightly better; however, the
LRBFCMmethodmight be improved in this regard, as demonstrated in recent work done on
shock-capturing using radial basis functions (Harris et al., 2015).

The results presented in this paper differ significantly from the results shown in Zheng
et al. (2015), although Zheng et al. find a good match between the MLPG and their reference

Figure 11.
Comparison of the
deformation for the

simultaneous
application of thermal

and pressure shock

Figure 12.
Comparison of the
axial stress for the

simultaneous
application of thermal

and pressure shock
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FEM solution. We suspect that the reason for this is the small node count used when
calculating their results. They used a regular square grid consisting of only 13 nodes in each
direction. In contrast, we needed at least ten times as many discretization points in each
direction to obtain a mesh-converged solution. Also, their solution does not implement the
boundary conditions for the temperature in the case of the pressure-shock loading in the
same way as the pioneering reference solution obtained by Hosseini-Tehrani and Eslami
(2000) and, thus, further reduces the possibility of a cross-code comparison.

This work also validates the time-stepping procedure used, which we plan to use as a
core for further extensions of the LRBFCM to the rate-dependent viscoplasticity. The
iterative GMRES algorithm used in the inner loop also keeps the total computational time
linear with respect to the number of discretization points and thus is not prohibitively long
for large node counts.
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